
1 3

Theor Appl Genet (2014) 127:1463–1489
DOI 10.1007/s00122-014-2332-9

RevIew

Genetic and molecular bases of yield‑associated traits:  
a translational biology approach between rice and wheat

Ravi Valluru · Matthew P. Reynolds · Jerome Salse 

Received: 4 August 2013 / Accepted: 15 May 2014 / Published online: 10 June 2014 
© Springer-verlag Berlin Heidelberg 2014

production. Globally, the genetic gain of both crops is less 
than 1 % p.a. (Hawkesford et al. 2013) although the pre-
dicted demand is higher (1.7 % p.a. for wheat, Rosegrant 
and Agcaoili 2010; and 1 % p.a. for rice, Kruse 2010) until 
2050. It is estimated that decreasing yield gaps between 
potential and farmers yields worldwide could increase yield 
of wheat and rice by 71 and 47 %, respectively (Mueller 
et al. 2012). The existence of large yield gaps highlights 
the crucial roles of crop management, environmental trade-
offs (e.g. CO2, Slattery et al. 2013) and socio-economic 
constraints towards sustainable cropland intensification. 
However, monitoring the genetic architecture of crop plants 
remains a major force driving yield potential and produc-
tivity (Yu et al. 2012), and several yield traits potentially 
influencing grain yields have been proposed (Murchie et al. 
2009; Foulkes et al. 2011; Parry et al. 2011; Reynolds et al. 
2012).

Rice and wheat differ in plant architecture, zones of 
adaptation, physiology, number of chromosomes and 
genome size (Salse et al. 2008; Nagai and Makino 2009; 
Shingaki-wells et al. 2011). Despite the apparent differ-
ences, they hold similar set of genes and share relative con-
servation of gene order along the chromosomes (Sorrells 
et al. 2003; Salse et al. 2008; Crismani et al. 2011). Due 
to the small genome size, availability of a genetic map as 
well as close representatives of the grass ancestor (struc-
tures in 12 chr. covered by ~10,000 founder genes), rice has 
been marked as a model species for cereal genomic under-
standing and therefore can greatly benefit other cereals, for 
example wheat (Bennetzen and Ma 2003; Salse 2012a). In 
contrast, biological entities unique to wheat such as earli-
ness per se genes, but absent in rice, could pave a way for 
improving genetic understanding of flowering pathways in 
rice (Faricelli et al. 2009). Owing to many shared genetic 
duplications and close colinearity in many aspects of 

Abstract Transferring the knowledge bases between 
related species may assist in enlarging the yield poten-
tial of crop plants. Being cereals, rice and wheat share a 
high level of gene conservation; however, they differ at 
metabolic levels as a part of the environmental adaptation 
resulting in different yield capacities. This review focuses 
on the current understanding of genetic and molecular 
regulation of yield-associated traits in both crop species, 
highlights the similarities and differences and presents the 
putative knowledge gaps. we focus on the traits associated 
with phenology, photosynthesis, and assimilate partition-
ing and lodging resistance; the most important drivers of 
yield potential. Currently, there are large knowledge gaps 
in the genetic and molecular control of such major biologi-
cal processes that can be filled in a translational biology 
approach in transferring genomics and genetics informa-
tions between rice and wheat.

Introduction

Cereals represent the most important group of cultivated 
crop plants. Rice and wheat are the two important food 
crops, accounting for more than 40 % of global food 
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physiology and metabolism, knowledge from both species 
could mutually benefit each other (Salse 2012a).

In this review, we summarize the current understanding 
of several aspects of plant biology and mark the similarities 
and differences between rice and wheat. To this end, we 
follow a conceptual model for yield (Reynolds et al. 2009, 
2010, 2012) and yield-associated traits (Murchie et al. 
2009; Foulkes et al. 2011; Parry et al. 2011; Reynolds et al. 
2012) for the physiological, genetic and molecular under-
standing in both species. This allowed us to identify several 
research gaps in both species. we believe that mutual shar-
ing of knowledge hotspots is important to increase yield 
gains in both species and to strengthen food security in the 
future.

Comparative genomics between wheat and rice 
for translational-based dissection

Comparative genomics, i.e. the studies of the relationships 
between genomes of phylogenetically related species, aims 
at identifying the portion of genomes that are conserved 
and those that are species specific allowing changes in 
genome structure and content to be related to differences 
in phenology. Comparative genomics in families that have 
a relatively recent history such as grasses are especially 
interesting because they allow understanding of the basis of 
diversity, adaptation and domestication that can help a bet-
ter exploitation of genetic resources for crop improvement. 
Comparative analyses between Triticeae (wheat) and other 
cereals (rice) have been the focus of intense research in 
the past decades. Comparative genomics, performed at the 
marker-based level (comparing wheat genetic maps to the 
rice genome) as well as sequence-based level (comparing 
wheat sequenced loci to rice genome fragment sequences), 
have indicated good conservation of the markers’ order at 
the genetic map level as well as gene order at the genome 
level promoting rice as a reference genome for the Triticeae 
and more particularly for wheat (Salse 2012b).

Sequence comparisons between the genes annotated in 
rice (42654 gene sequences) and the mapped wheat genes 
(6426 mapped eSTs) revealed 13 blocks of colinearity cov-
ering 83 and 90 % of the rice and wheat genomes, respec-
tively (Salse et al. 2008). They correspond to the following 
chromosome pairs: w1-r5, w1-r10, w2-r4, w2-r7, w3-r1, 
w4-r3, w4-r11, w5-r3, w5-r9, w5-r12, w6-r2, w7-r6 and 
w7-r8. A comparison of the linear order of the rice and 
wheat genes indicated that for 27 % of them, the identi-
fied wheat ortholog is not located in the orthologous wheat 
region indicating additional rearrangements (such as wheat 
specific local duplications, translocations and transposi-
tions) within orthologous regions between rice and wheat. 
Despite the gene conservation between rice and wheat, 
10 major large duplicated blocks covering 67.5 % of the 

wheat genome have been identified in Triticeae genomes 
(Salse et al. 2008). Further comparisons with duplicated 
regions in rice and wheat revealed that seven of the intra-
specific duplications are conserved at orthologous positions 
between rice and wheat. These ancestral shared duplica-
tions were found in the following chromosome pair combi-
nations: w1-w2/r5-r4, w1-w3/r5-r1, w1-w4/r10-r3, w2-w4/
r7-r3, w2-w7/r4-r8, w5-w7/r9-r8 and w6-w7/r2-r6. Alto-
gether, they represent 68 % of the rice genome and 66 % 
of the wheat genome, an evidence for the occurrence of an 
ancestral polyploidization event (Salse et al. 2008) dating 
back to 90 million years ago (MYA).

Further analyses of the origin and evolution of the 
shared duplications in maize, sorghum and Brachypodium, 
led to the proposed model for grass genome evolution 
from an ancestor with 7 chromosomes structured with pro-
togenes and with a physical coding space size of <50 Mb 
that underwent a whole genome duplication (wGD), 50–70 
MYA followed by two interchromosomal translocations 
and fusions that resulted in a n = 12 intermediate ances-
tor (Murat et al. 2010; Murat et al. 2014). In this model, 
rice has retained the original chromosome number (12), 
whereas chromosome number has reduced in the other 
cereal genomes. In wheat, 5 chromosomal fusions resulted 
in an ancestral wheat genome with n = 7 chromosomes. 
Thus, the 10 duplicated regions observed in the wheat 
genome reflect the ancestral wGD and 3 additional seg-
mental duplications (SD) that have occurred after the rice/
wheat speciation (Salse 2012a, b). In the recent history, 
wheat ancestors (n = 7) went through two neopolyploidiza-
tion events leading to Triticum aestivum, which originated 
from two hybridizations between T. urartu (A genome) 
and an Ae. speltoides-related species (B genome) 1.5 
MYA, forming T. turgidum ssp. diccocoides; and between 
T. turgidum ssp. durum (genomes AB) and Ae. tauschii (D 
genome) 10,000 years ago (Fig. 1).

wheat genomics resources have been recently published 
with the release of the wheat genome shotgun hexaploid 
(Brenchley et al. 2012) and diploid (D genome) ances-
tor sequences in Jia et al. (2013) and Luo et al. (2013), as 
well as the A genome progenitor sequence in Ling et al. 
(2013), sequences as well as genome-wide diversity maps 
in hexaploid (Allen et al. 2011, 2013; Chao et al. 2009; 
winfield et al. 2012; Lai et al. 2012; Cavanagh et al. 
2013), tetraploid (Saintenac et al. 2011a, b; Trebbi et al. 
2011; Ren et al. 2013) or diploid progenitors (wang et al. 
2013; You et al. 2011). The integrations of both genomic 
and genetic resources, described in the previous section, 
offered recently the opportunity to provide the most accu-
rate wheat syntenic (or also referenced as computed, Pont 
et al. 2011) gene order (i.e. syntenome) and to test its accu-
racy as this will probably represent in the medium term the 
wheat genome reference, until complete pseudomolecules 
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are publicly released for the 21 chromosomes. Such vali-
dated wheat syntenome offered the opportunity to perform 
a comprehensive analysis of wheat gene space evolution-
ary plasticity during the last 100 million years, suggest-
ing a contrasted mode of evolution between A, B and D 
subgenomes (Pont et al. 2013). Contrasted plasticity was 
observed where the B subgenome appears sensitive (i.e. 
plastic) in contrast to A as dominant (i.e. stable) in response 
to the neotetraploidization event 1.5 MYA and D subge-
nome as supradominant (i.e. pivotal) in response to the 
neohexaploidization event 10,000 years (Pont et al. 2013).

Finally, accurate comparative genomic relationships led 
to an improved representation of cereal genomes in con-
centric circles providing a new reference tool for improved 
gene annotation and cross-genome markers development 

(Bolot et al. 2009). Comparative genomics data provide 
information about the 16 K non-redundant ancestral plant 
gene set that can be used as a platform for the develop-
ment of conserved orthologous set (COS) markers for SNP 
discovery (Quraishi Masood et al. 2009; Pont et al. 2011), 
to support cross-genome (also referenced as translational) 
map-based cloning strategies. COS-based translational 
genomic approaches have been widely used in plants to 
identify trait expression associated with non-sequenced 
genomes such as wheat on the orthologous regions identi-
fied in the rice reference sequenced genome. This transla-
tional genomics strategy has been successfully applied in 
wheat to identify genes associated with nitrogen use effi-
ciency (Quraishi et al. 2011a), grain fibre content (Qurai-
shi et al. 2011b) and carotenoid content (Dibari et al. 2012) 

Fig. 1  Rice and wheat genomes evolutionary history from the grass 
ancestor. The modern rice (left, Chr 1 to 12) and wheat (right Chr 
1A to 7D) chromosomes (bottom) are represented with colour codes 
to illustrate the evolution of segments from a common grass ances-
tor with seven protochromosomes (top). whole genome duplications 

(wGD or polyploidy) are illustrated with red dots. The origin of the 
21 bread wheat chromosomes is shown with two-hybridization event 
between A, B and D progenitors (adapted from Murat et al. 2014 and 
Pont et al. 2013)
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using rice as a pivotal model genome. This strategy has 
opened new perspectives in enlarging the yield potential 
of both crops based on comparative biology of phenology, 
photosynthesis, assimilates partitioning and lodging resist-
ance traits.

Crop phenology adaptation to environments

wheat adaptation to a wide range of environments is 
largely governed by allelic diversity in vernalization (VRN 
genes, 1, 2, 3 on chr. 5, spring vs. winter), photoperiod 
genes (PPD genes, A1, B1, D1 on chr. 2, photoperiod-
sensitive and -insensitive) and genes controlling earliness 
per se (Tables 1, 2; Lewis et al. 2008; Zhang et al. 2008; 

Faricelli et al. 2009; Distelfeld et al. 2009; Dhillon et al. 
2010; Mayfield et al. 2011). earliness per se locus, Eps-
Am1, affects the duration of early developmental phases in 
wheat (Lewis et al. 2008; Faricelli et al. 2009), and 33 chro-
mosomal regions were identified for earliness in hexaploid 
wheat (Gouis et al. 2011). Many of them colocalize with 
vernalization and photoperiod genes (Chen et al. 2010), 
indicating that an appropriate combination of these alleles 
would modify developmental phases in wheat. A recent 
study reported that VRN-A1, PPD-D1 and VRN-D3 show 
greatest impact on the development at stem elongation 
period, heading time and physiological maturity, respec-
tively (Chen et al. 2010). In addition, several QTLs on chr. 
1, 2, 5 and 7 were linked to different developmental phases; 

Table 1  Genes driving yield-associated traits in wheat and rice

a The variation in the expression of these proteins is reported to be associated with the rice adaptation to different latitudes
b These genes are reported to be associated with earliness in rice

Trait wheat genes References Rice genes References

vernalization VRN Cockram et al. (2007),  
Colasanti and Coneva (2009)

Hd1, Ehd1, DTH2a Izawa et al. (2007),  
wu et al. (2013)

Photoperiod response PPD Cockram et al. (2007) Hd1, Ehd1, Hd3a, OsGI, SPIN1, 
OsPRR37

Izawa (2007), wu  
et al. (2013), Koo 
et al. (2013)

earliness per se Eps Lewis et al. (2008),  
Faricelli et al. (2009)

Hd1 and 2b Faricelli et al. (2009)

Floral transition WAP1 (TaMADS11), 
WAP2 (Q gene)

Murai et al. (2002), Ning  
et al. (2009)

RAP1B, RFT1, EF7, SE5 Kyozuka et al. (2000), 
Saito et al. (2012), 
Takahashi et al. 
(2009)

Tillering tin Kebrom et al. (2012) Moc1, OsTB1 Xing and Zhang  
(2010)

Leaf architecture Pa2, His2, Hl1 and 2 wu-yun et al. (1999),  
Dobrovolskaya et al. (2007)

RTFL, OsDWARF4, OsAGO7, 
NAL2/3, OsBAK1, Roc5

Tsukaya (2006),  
Sakamoto et al. 
(2006), Shi et al. 
(2007), Ishiwata 
et al. (2013), Li et al. 
(2009), Zou et al. 
(2011)

Leaf photosynthesis and 
Rubisco

RCA Ristic et al. (2009) Chl1 and 9, PHD1 Zhang et al. (2006), Li 
et al. (2011)

Leaf senescence Gpc Olmos et al. (2003) SUB1, SAGs Fukao et al. (2012), 
Lee et al. (2001)

Panicle development LAX1, Moc1, FZP Xing and Zhang, 
(2010)

Spikelet development Bh, Eps Faricelli et al. (2009),  
Peng et al. (2000)

APO1, SP1, DEP1 Xing and Zhang, 
(2010)

Grain characteristics TaGW2, TaCKX2 Bednarek et al. (2012),  
Zhang et al. (2010b)

Gn1a (OsCKX2), GS3,  
GW2 and 5

Ashikari et al. (2005), 
Fan et al. (2006), 
Takano-kai et al. 
(2009), Song et al. 
(2007)

Grain-fill TaISA3 Kang et al. (2013) GIF1, GW2, rg5 Song et al. (2007), 
wang et al. (2008a, 
b), Ishimaru et al. 
(2005a, b)
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however, they have not been explored yet (Kato et al. 2002; 
Borràs-Gelonch et al. 2010, 2011, 2012).

In contrast, three major photoperiod genes explain 
the adaptation of rice cultivars to local environments: 
Heading date 1 (Hd1), Early heading date 1 (Ehd1) and 
Hd3a (Yano et al. 2001; Nakagawa et al. 2005; Izawa 
2007; Cockram et al. 2007). At least 14 QTLs controlling 
photoperiodic response in rice were mapped on distinct 
chromosomes (Yano et al. 1997; Yamamoto et al. 2000; 
Lin et al. 2006; Yin et al. 1997), and five QTLs, Hd1, 2, 
3, 6 and 9 were mapped precisely on the genetic link-
age groups of chr. 3 and 6 as a single Mendelian factors 
(Yano et al. 1997; Yamamoto et al. 2000; Lin et al. 2006; 
Yin et al. 1997). The adaptation of rice cultivars to the 

northern latitudes/cooler climates (for example wild rice, 
Oryzae rufipogon, is limited to 31°N, while the culti-
vated rice, Oryzae sativa, is adapted to until 45°N, Izawa 
2007) is believed to be due to the balance of Hd1 repres-
sion and Ehd1 promotion (Izawa 2007; Doi et al. 2004; 
ebitani et al. 2005; Takeuchi et al. 2006). The absence 
of these two alleles may probably increase yields in the 
tropics because plants may have extended vegetative 
development in warm climates regardless of the natural 
photoperiod (Doi et al. 2004; Izawa 2007). Recently, a 
nucleotide polymorphism in DTH2 (days to heading; wu 
et al. 2013) and natural variation in OsPRR37 (Koo et al. 
2013) were shown to influence rice cultivation at a wide 
range of latitudes. Although Hd1 and 2 alleles on chr. 6 

Table 2  Major QTLs regulating yield-associated traits in wheat and rice

Trait wheat chromosomes References Rice chromosomes References

vernalization 5 Cockram et al. (2007), Colasanti  
and Coneva (2009)

– –

Photoperiod response 2 Cockram et al. (2007) 3 and 6 Yano et al. (1997), Yin et al. 
(1997), Yamamoto et al. (2000), 
Lin et al. (2006)

earliness per se 1 and 2 Lewis et al. (2008), Faricelli et al. 
(2009)

6 and 7 Nakagawa et al. (2005)

Grain yield 2, 4, 5, 6, and 7 Peleg et al. (2011), Maccaferri  
et al. (2008), Huang et al. (2006), 
Quarrie et al. (2006)

1, 3, 5, 6, and 7 Ishimaru et al. (2001a, b),  
Zhang et al. (2004), Xing  
and Zhang (2010)

Grain-filling 1, 2, 3, 4, 5, 6, and 7 wang et al. (2008a, b), Salem et al. 
(2007), Kajimura et al. (2011)

2, 4, 5, 8, and 12 Song et al. (2007), wang et al. 
(2008a, b), Ishimaru et al.  
(2005a, b)

Kernels per spike/panicle, 
thousand kernel weight, 
spike number

1, 2, 3, 4, 5, and 6 Peleg et al. (2011),  
Narasimhamoorthy et al. (2006)

1, 2, 3, and 7 Zhang et al. (2009), Liu et al. 
(2010)

Grain length, size, weight 1, 4, 5, and 7 Gegas et al. (2010), Mir et al. (2012) 2, 3, 5, 6, 7, and 8 Song et al. (2007), Fan et al. 
(2006), weng et al. (2008), 
Shomura et al. (2008), Qiu  
et al. (2012), Bai et al. (2010)

Lodging resistance/stem 
strength/stem diameter

4, 5, and 6 Lanning et al. (2006), Hai et al. 
(2005), Ma (2009), verma et al. 
(2008), Huang et al. (2006)

1, 5, 6, 7, 8, and 12 Kashiwagi and Ishimaru (2004), 
Ookawa et al. (2010),  
Kashiwagi et al. (2008),  
Kashiwagi et al. (2010)

Flag-leaf characters 1, 2, 5, and 6 Coleman et al. (2001), wang  
(2009), ter Steege et al. (2005), 
Kulwal et al. (2003)

1, 2, 3, 4, 6, 8, and 9 Hu et al. (2012), Chen et al. 
(2011), Farooq et al. (2010), 
Zeng et al. (2009), Dong et al. 
(2004), Yue et al. (2006)

Chlorophyll content 1, 2, 4, 5, and 7 Quarrie et al. (2006), Yang et al. 
(2007), Zhang et al. (2009), Yan 
et al. (2010a, b)

1, 3, 4, and 8 Abdelkhalik et al. (2005),  
Zhang et al. (2006), Jiang  
et al. (2012), Dong et al. (2007)

Rubisco content (Barley 
and rice)

4 Becker and Heun (1995), Forster  
et al. (2000), This et al. (2000)

8, 9, and 10 Ishimaru et al. (2001a, b),  
Kanbe et al. (2009)

Net photosynthesis – – 4 Teng et al. (2004), Adachi et al. 
(2011), Gu et al. (2012)

Leaf senescence 1, 2, 3, 5, 6, and 7 Bogard et al. (2011), Li et al.  
(2012a, b)

6 and 9 Abdelkhalik et al. (2005), Fu et al. 
(2011), Lin et al. (2010)

Nitrogen uptake, use 
efficiency

3, 4, 5, and 7 Quraishi et al. (2011a, b), Habash 
et al. (2006), Fontaine et al. (2009)

2, 8, and 9 Obara et al. (2004), Piao et al. 
(2009), wang et al. (2010)
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and 7, respectively, of rice are proposed to be associated 
with earliness (Nakagawa et al. 2005), since earliness per 
se loci are absent (Faricelli et al. 2009) further, transla-
tion of understanding of adaptive mechanisms in wheat 
could help extend rice cultivation to cooler environ-
ments. Additionally, circadian-associated genes should 
be explored for their effects on developmental phases in 
both crops.

Despite the progress of molecular understanding of 
flowering time, it has been of limited use in crop improve-
ment. A wheat MADS (MCM1, AGAMOUS, DeFI-
CIeNS, SRF) box gene responsible for the transition from 
vegetative to reproductive phases in wheat was identified 
as wheat AP1 (Apetala1) gene, WAP1 (formerly TaM-
ADS11, Murai et al. 2002). Several lines of evidences 
strongly support that WAP1 acts as an activator in the 
vernalization pathway in wheat. First, WAP1 transcripts 
are expressed at double-ridge stage, the stage at which 
growth phase changes from vegetative to reproductive 
growth, and also coincide with the expression of TaVRT-
1 (Danyluk et al. 2003). Second, WAP1 is an ortholog of 
VRN1 (only 5 amino acids changes), and the three homoe-
ologous genes of WAP1 correspond to three homoeolo-
gous genes of VRN genes (Yan et al. 2003). Third, WAP1 
transcripts are up-regulated by cold (Murai et al. 2003). 
Fourth, WAP1 is up-regulated by long photoperiods and 
acts on different pathways as compared to Ppd genes 
in promoting the floral transition (Murai et al. 2003). 
Finally, WAP1 acts at the downstream of WFT (wheat FT, 
Ogihara et al. 2003). Since AP1 is involved in the short-
day regulation of flowering time (Ruttink et al. 2007), it 
is reasonable to propose that WAP1 might be involved in 
the short-day regulation of flowering network in wheat; 
yet definitive studies are lacking. As WAP1 shares high 
sequence similarity with TaVRT-1 of wheat (differs for 
three amino acids, Danyluk et al. 2003), VRN1 of T. 
monococcum (Yan et al. 2003), BM5 of barley (Schmitz 
et al. 2000) and RAP1B of rice (Kyozuka et al. 2000), this 
gene might be conserved among species playing key roles 
in plant adaptation to environments.

The Q gene has been validated as an AP2-like gene 
(Apetala2), WAP2 in wheat (Simons et al. 2006; Ning 
et al. 2009). An AP2-like gene was identified from barley 
(HvAP2), which is homoeologous to Q gene of wheat, and 
shown to regulate spike morphology in barley and wheat 
(Gil-Humanes et al. 2009; Nair et al. 2010). wheat har-
bours nine AP2-like genes (AP2-1 to 2-9; Zhuang et al. 
2010); however, their exact functional roles are largely 
unknown although they can be suspected to play roles in 
phenological phase transitions associated with vernali-
zation (Mutasa-Gottgens et al. 2012) and in the parental 
control of grain development (Ohto et al. 2005). Recently, 
a gene OsAP2-39 was shown to control key interactions 

between abscisic acid and gibberellin in rice (Yaish et al. 
2010), suggesting that AP2-like genes, in general, appear to 
have multifunctional roles in plants.

In rice, several regulatory genes for the photoperiodic 
control of flowering time were reported: heading date1 
(Hd1, Hayama et al. 2003; Takahashi et al. 2009), head-
ing date3a (Hd3a, Ishikawa et al. 2005), rice ortholog 
of Gigantia (OsGI, Hayama et al. 2003), Early head-
ing date1 (Ehd1), Spotted leaf11-interacting protein1 
(SPIN1), rice flowering locus T1 (RFT1), early flower-
ing 7 (Ef7) and Photoperiod sensitivity5 (SE5) (vega-
Sánchez et al. 2008; Andrés et al. 2009; Komiya et al. 
2009; Takahashi et al. 2009; Saito et al. 2012). The varia-
tions in Hd1 proteins, Hd3a promoters and ehd1 expres-
sion level have been shown to contribute to the flowering 
time diversity in cultivated rice (Takahashi et al. 2009). 
However, the genetic and molecular regulation of differ-
ent phenological phases is largely unknown. Mutations 
in, polymorphisms of, these genes might be linked to 
phenological phase modifications as was shown for bar-
ley in which mutations in early maturity 8 (EAM8) adapt 
domesticated barley to short growing seasons (Faure 
et al. 2012).

Photosynthesis and associated traits

Photosynthesis ultimately limits crop productivity and 
hence constitutes a highly desirable trait to modify 
genetically (evans 2013). Both rice and wheat show 
the highest rates of photosynthesis per unit of leaf N as 
compared to the other C3 cereals due to greater N alloca-
tion to Rubisco (Makino et al. 1992), and higher meso-
phyll conductance (Caemmerer and evans 1991). Being 
an allopolyploidy species, wheat has undergone many 
genomic modifications (Saintenac et al. 2011a, b) and at 
a physiological level, an allopolyploid genome is often 
associated with high plant vigor and increased fertility 
(Akhunova et al. 2010). Recently, an affymetrix wheat 
genome array revealed evidence of homoeolog-specific 
coordinated up- and down-regulation of several gene 
categories, including those involved in photosynthesis 
processes, suggesting the coevolution of cis- and trans-
regulators, which may lead to divergence and incompat-
ibility of regulatory networks in allopolyploid species 
(Akhunova et al. 2010). The up-regulation of photosyn-
thetic pathways only in A and B subgenomes of wheat 
provides good targets for studying the molecular basis 
of photosynthesis. On the other hand, the small genome 
of rice has permitted genetic and molecular exploration 
of several processes influencing crop photosynthesis 
including the control of tillering (moc1, Li et al. 2003), 
leaf development (RTFL gene, Tsukaya 2005), leaf archi-
tecture and erectness (OsDWARF4 gene, Sakamoto et al. 
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2006), and rolled or v-shaped leaf (OsAGO7 gene, Shi 
et al. 2007). Although the current understanding of plant 
architecture is still incomplete, a significant molecular 
basis has been accumulated mainly through the charac-
terization of rice mutants.

Rice and wheat differ for photosynthetic capacity as 
they exhibit different trait expressions associated with 
photosynthesis. Two large consortiums involving mul-
tidisciplinary approaches such as C4 rice (C4R; Sheehy 
et al. 2007) and wheat yield consortium (wYC; Reynolds 
et al. 2010) were initiated to improve the photosynthetic 
capacity and efficiency in rice and wheat, respectively. 
Both consortiums partly differ in their working objectives: 
C4R mainly focuses on phenotype and mutant screens to 
explore natural diversity and to establish a known pool 
of genes that confer ‘C4-ness’. Genomic approaches are 
designed to compare the gene expression between (1) C3 
and C4 leaves, (2) mesophyll and bundle sheath cells, (3) 
developmentally distinct regions of a leaf and (4) different 
growth stages within a leaf. Using molecular engineering 
approaches, these genes are transformed into cultivated 
rice for C4 traits such as leaf anatomy, core C4 genes 
(PePC, PPDK, NADP-Me and MDH) and regulatory ele-
ments (e.g. transporters) associated with C4 metabolic 
dynamics (Rizal et al. 2012; Covshoff and Hibberd 2012). 
In wYC, the phenotypic selection for photosynthetic 
capacity and efficiency of leaf and spike together with 
optimizing canopy photosynthesis and its duration are 
considered. At the molecular level, introducing CO2 con-
centrating pumps, increasing RuBP regeneration capacity, 
improving thermal stability of Rubisco activase and modi-
fying Rubisco protein structure (large subunits) are under 
progress (Parry et al. 2011).

Leaf traits, light interception and conversion efficiency

Light interception and conversion efficiency are deter-
mined by the speed of canopy development and closure, 
leaf absorbance, canopy longevity, size, architecture and 
antenna size (Zhu et al. 2010). Leaf anatomy plays a major 
role in the light use efficiency and thus in the genetic diver-
sity for maximum net CO2 exchange rate (Amax). For exam-
ple, a large genetic diversity for Amax was reported for T. 
urartu (about 35 % higher Amax, Austin 1982) and emmer 
wheat (Carver et al. 1989). The potential of manipulating 
leaf anatomy to gain increased photosynthetic properties 
in both crops has been neglected partly due to the genes 
controlling C4 leaf anatomy, largely unknown (Tholen 
et al. 2012). Therefore, exploring the variation for bet-
ter leaf anatomy, higher vein density and lower number of 
mesophyll cells through phenotypic and mutant screens 
would, therefore, be crucial (Smillie et al. 2012). A higher 
interveinal distance between minor and major veins was 

recently highlighted to improve light absorption using rice 
deletion mutant population (Smillie et al. 2012) suggest-
ing that modifying interveinal spaces would improve light 
absorption. Alternatively, lowering chlorophyll content of 
photosynthetic tissue has been proposed as a potentially 
robust strategy to improve light conversion efficiency (Zhu 
et al. 2010; Ort et al. 2011). A rice mutant with a low con-
tent of chl b and a high chl a/b ratio of 4.7 (Chen et al. 
2007) was reported to have improved canopy light penetra-
tion. This is also beneficial for altering canopy temperature, 
maintaining cooler canopies (Ort et al. 2011), and therefore 
down-regulation of chlorophyll synthesis early in the path-
way might improve light conversion efficiency (Zhu et al. 
2010).

Light use efficiency by the photosynthetic apparatus 
is a conserved trait among plants (Skillman et al. 2011); 
thus, identifying QTLs/genes controlling plant architecture 
would be an important step in improving photosynthesis. 
Several loci for flag-leaf characteristics were mapped on 
several chromosomes in both crops. In wheat, chr. 1, 2, 5 
and 6 (Table 2, wang 2009; Coleman et al. 2001; ter Steege 
et al. 2005) while in rice, chr. 2, 4 and 6 have been shown 
to control flag-leaf characteristics such as length, width, 
angle, size and the ratio of length to width (Dong et al. 
2004; Yue et al. 2006; Fan et al. 2007; Zeng et al. 2009; 
Farooq et al. 2010; Chen et al. 2011; Hu et al. 2012). Many 
of these QTLs were co-localized with QTLs for leaf elon-
gation rate and days to flag-leaf emergence in both crops 
(ter Steege et al. 2005; Dong et al. 2004). As chr. 2 and 
6 were commonly reported in both crops, they might be 
important regions for improving flag-leaf characteristics 
in both crops. These QTLs would be useful for improv-
ing flag-leaf characteristics, leaf development and thus the 
selection of fast growing genotypes before heading. How-
ever, due to multiple loci controlling leaf traits, the genetic 
architecture of leaf traits would be small with little epista-
tis, environmental interaction or pleiotropy as was reported 
for maize (Tian et al. 2011).

A gene, chlorina-1 encoding chlorophyll D (ChlD) sub-
unit of Mg-chelatase identified (on chr. 3) in rice (Zhang 
et al. 2006) would represent a key initiative for increasing 
light use and conversion efficiency in both crops as ChlD 
has a high light-absorption spectrum of 700–750 nm (Chen 
and Blankenship 2011). Moreover, identifying tissue-
specific gene regulation would be important, for example 
a gene, OsPNH1, was shown to play significant role only 
in leaf, but not in stem and root, vascular development in 
rice (Nishimura et al. 2002). In rice, genes, narrow leaf 2 
& 3 controlling leaf width (Ishiwata et al. 2013); OsBAK1 
controlling leaf erectness (Li et al. 2009) and Roc5 control-
ling leaf rolling (Zou et al. 2011) while in wheat, Pa2 and 
His2 (leaf sheath hairiness, wu-yun et al. 1999) and HI1&2 
(leaf pubescence, Dobrovolskaya et al. 2007), have been 
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reported. These genes are yet to be explored for the effects 
on leaf architecture and their utility in crop improvement.

Leaf and canopy photosynthesis

C3 species show considerable variation in their maximum 
CO2 fixation capacity (Flood et al. 2011), varying from 
29 μmol m−2 s−1 in wheat to as low as 6 μmol m−2 s−1 in 
Picea (wullschleger 1993) due to differences in carboxyla-
tion capacity (6–194 μmol m−2 s−1) and electron transport 
rate (17–372 μmol m−2 s−1) (Lawson et al. 2012). High 
photosynthetic capacity per unit leaf area needs lower mes-
ophyll resistance and mesophyll thickness as mesophyll 
cell walls could account for >50 % of the total resistance 
(evans et al. 2009). However, altering mesophyll cell wall 
thickness alone to increase mesophyll conductance is not 
sufficient due to smaller chloroplast surface area in wheat 
(76 % of the cell periphery is covered by chloroplasts, Sage 
and Sage 2009), and chloroplasts are pressed against the 
cell periphery by large vacuoles. Therefore, the surface 
area of chloroplast exposed to intercellular airspace per 
unit leaf area needs to be increased, in addition to reduc-
ing mesophyll cell wall thickness to increase the photosyn-
thetic capacity in wheat (evans et al. 2009; Giuliani et al. 
2013). In contrast, rice has chloroplasts that dominate the 
overall volume of the cytoplasm of mature chlorenchyma 
cells covering >95 % of the cell (von caemmerer and evans 
1991; Sage and Sage 2009). The dense and chloroplast-
rich cytosol offset the lower mesophyll thickness, and thus 
rice has a photosynthetic capacity that is nearly 80 % of 
the wheat (Sage and Sage 2009). Recently, mesophyll 
cell expansion was shown to be closely associated with 
vein density changes in rice mutants (Smillie et al. 2012) 
emphasizing the importance of genes associated with vein 
density changes in exploiting leaf anatomy variation in 
both species, wheat and rice.

Increasing photosynthesis during grain-filling period 
is necessary, and several QTLs (chr. 1, 4, 5 and 7) were 
mapped for several photosynthetic traits during grain-fill-
ing period in wheat (Quarrie et al. 2006; Yang et al. 2007; 
Zhang et al. 2009; Yan et al. 2010a, b). Interestingly, the 
QTL on chromosome 5B was mapped for intercellular CO2 
concentration (Ci), which explained a large phenotypic 
variation for Ci in wheat seedlings (Yan et al. 2010a, b). 
Consistently, QTLs on chr. 5 were represented in all these 
studies suggesting that chr. 5 could be an important in 
explaining the variation in chlorophyll content and Ci. In 
rice, several QTLs were identified (chr. 1, 3, 4 and 8) and, 
however, only one positive allele was observed on chr. 4, 
which were the net effects during the period from tillering 
to heading (Jiang et al. 2012), and this has been consist-
ently showed to influence several photosynthetic traits such 
as net photosynthesis, stomatal conductance, transpiration 

efficiency, quantum yield of PSII and chlorophyll fluores-
cence parameters (Adachi et al. 2011). QTLs on chr. 4 have 
pleiotropic effects on leaf nitrogen content and hydrau-
lic conductance by increasing the root surface area and 
hydraulic conductivity (Adachi et al. 2011). These QTLs/
genes need to be explored to improve not only photosyn-
thetic traits but also for their pleiotropic effects on other 
traits related to yield potential.

Molecular engineering approaches to transfer photo-
synthesis-associated genes in cereals have been achieved; 
however, manipulating cell biochemistry has yielded partial 
results in transgenic rice (Taniguchi et al. 2008). Limited 
number of genes such as genes encoding for photosystem 
II subunits (PsbS; Hubbart 2012), sedoheptulose-1,7-bi-
sphosphate (SBPase) and fructose-1,6-bisphosphate 
(FBPase) have shown to increase net photosynthesis 
(6–12 %, Tamoi et al. 2006; Feng et al. 2007, 2009), sug-
gesting that improving photosynthesis might be limited to 
specific set of biochemical changes. This might be partly 
due to the fact that many of the genes encoding the core 
photosynthesis processes are known to be highly conserved 
and therefore subject to limited levels of variation (Shi 
et al. 2005). Nevertheless, many essential photosynthesis 
genes in chloroplasts exhibit natural variation (el-Lithy 
et al. 2005), and a whole chloroplast genome comparison 
of rice and wheat revealed that rice chloroplast genes tend 
to have evolved more slowly than wheat at loci where rate 
heterogeneity exists (Matsuoka et al. 2002). Only one pho-
tosynthetic gene, psbC, has shown fourfold heterogeneity 
for nucleotide substitution rate between rice and wheat 
(Matsuoka et al. 2002). Plastid-encoded psbC gene encodes 
CP43 subunit, a chlorophyll-binding antenna protein of 
photosystem II, and forms an operon together with other 
photosynthetic-related genes in higher plants. These genes 
might be interesting targets for plant breeding because they 
might exhibit genetic variation among crop species reflect-
ing local climatic adaptation, as was reported for proline 
biosynthesis enzyme, Pyrroline-5-carboxylate synthetase1 
(P5CS1, Kesari et al. 2012). exploring natural variation in 
photosynthesis through phenotyping would narrow down 
the key photosynthetic genes or traits. For example, a com-
parative transcriptional profiling has established the ‘awn’ 
as the major photosynthetic organ of barley spike during 
the grain-filling period (Abebe et al. 2009).

Rubisco and its regulation

C3 species overexpress Rubisco due to its low catalytic effi-
ciency and altering Rubisco kinetic properties has been pro-
posed to increase photosynthesis (Parry et al. 2012). Muta-
tions in Rubisco protein at several amino acid sites, 101, 
258, 270, 281 and 309, have resulted in different catalytic 
properties in C4 lineages (Christin et al. 2008) and have 
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been proposed for genetic engineering of Rubisco. Consist-
ently, isoleucine 309 was identified as a catalytic switch for 
faster carboxylation rates in C4 species (Flaveria). whether 
such catalytic sites would increase carboxylation rates in 
C3 species such as wheat and rice are yet to be examined 
(whitney et al. 2011). Identifying such catalytic switches in 
both crops would be a key step to increase Rubisco capac-
ity. Overall, these studies suggest that Rubisco nucleotide 
diversity and its polymorphism (Kapralov et al. 2012) could 
be a potential source for manipulating Rubisco dynamics in 
both crops. In rice, altering the CO2 and O2 specificity of 
Rubisco has been attempted by transforming Rubisco small 
subunits (RbcS, Suzuki et al. 2009; Ishikawa et al. 2011), 
which increased Rubisco content by 30 % and RbcS levels 
1.5–2.0-fold on a leaf area basis (Suzuki et al. 2007, 2009; 
Ishikawa et al. 2011). Nevertheless, photosynthesis was not 
enhanced due to lower electron transport, which is insuf-
ficient to support the increased Rubisco capacity. At high 
light conditions, the maximum electron transport rate corre-
lates with cytochrome b6/f and ATPase contents, suggesting 
that greater amounts of these two would be linked to higher 
electron transport rate (Yamori et al. 2011). Alternatively, 
introducing a parallel electron carrier between cytochrome 
f and PSI, as was shown in Arabidopsis (Peterhansel et al. 
2008) and a selection for pFNRII proteins (pFNRII bind 
strongly with ferredoxin due to the mutations to double 
lysine residue of N-terminal region of pFNRII proteins as 
was shown in wheat, Bowsher et al. 2012) may increase 
electron transport rate.

At the genetic level, despite the identification of QTLs 
regulating chlorophyll content, the QTLs regulating 
Rubisco content have not yet been identified in wheat but 
were identified in barley on chr. 4. This QTL also colocal-
izes with the QTLs for Rubisco activase gene (Becker and 
Heun 1995), stomatal conductance and chlorophyll content 
in barley (Forster et al. 2000), indicating the importance of 
this QTL for improving photosynthetic traits (This et al. 
2000; Poorter et al. 2005). In contrast, in rice, QTLs con-
trolling Rubisco content were mapped on chr. 8, 9 and 10 
(Ishimaru et al. 2001b; Kanbe et al. 2009). None of these 
QTLs were co-localized with the QTLs for total leaf N con-
tent, suggesting that different genetics would control both 
Rubisco contents and total leaf N (Ishimaru et al. 2001b). 
Consistently, QTLs controlling the ratio of Rubisco to total 
leaf N were detected on chr. 1, 5 and 12 (Ishimaru et al. 
2001b), suggesting that genetic regulation of Rubisco con-
tent may vary with the development stage of the consid-
ered plant (Ishimaru et al. 2001a; Kanbe et al. 2009). No 
clear varietal differences in Rubisco content at any identi-
cal leaf nitrogen content were observed in rice (Hirasawa 
et al. 2010), indicating that the genetic regulation of other 
traits (e.g. stomatal conductance) should be considered for 
improving photosynthetic rate.

At the molecular level, small (rbcS) and large (rbcL) 
subunits of Rubisco could be candidate targets for increas-
ing Rubisco levels in the plants. However, rbcL is largely 
conserved among plant species and is up-regulated by 
nuclear-localized rbcS (Suzuki and Makino 2013). Since 
the rbcS expression declines faster than rbcL expression 
with age (Suzuki and Makino 2013), the genetic varia-
tion in rbcS may be closely associated with the variation 
in Rubisco contents and thus photosynthetic rates. How-
ever, an overexpression of rbcS gene did not increase pho-
tosynthetic rate in transgenic rice due to lower N invest-
ment in other components (Suzuki et al. 2007). Since rice 
has higher contents and lower specific activity of Rubisco 
as compared to other plants (e.g. wheat), introduction of a 
more efficient Rubisco may be a strategy to improve pho-
tosynthesis and N-use efficiency in rice. In contrast, wheat 
has higher specific activity of Rubisco (Makino 2011); 
whether an overproduction of rbcS (higher Rubisco con-
tents) could improve photosynthetic rate in wheat remains 
to be tested.

Leaf senescence

The remobilization of carbon (C) and N compounds to 
grains during the grain-filling phase is largely governed 
by leaf senescence, and several QTLs have been identified 
in wheat (Bogard et al. 2011; Li et al. 2012a). A genomic 
region of T. turgidum spp. dicoccoides carrying the high 
grain protein content (GPC) gene was mapped as a QTL on 
chr. 6BS (Joppa et al. 1997), which increased GPC in both 
tetraploid and hexaploid wheat (Olmos et al. 2003). Later, 
this allele has been shown to encode a NAC transcription 
factor, NAM-B1 (Uauy et al. 2006; Distelfeld et al. 2006, 
2007; Bogard et al. 2011; Carter et al. 2012). The allele is 
functional in ancestral wild wheat, whereas modern wheat 
(both tetraploid and hexaploid) carries a non-functional 
NAM-B1 allele (because the allele has a 1-bp frameshift 
mutation in the 5′ end; Gregersen et al. 2008). It is, thus, 
conceivable that early domestication of wheat involved a 
selection for delayed senescence originating from a non-
functional Gpc-B1 gene, possibly due to the selection for 
higher yield cultivars (Gregersen et al. 2008).

In rice, both indica and japonica exhibit different leaf 
senescence patterns being early for the former and the lat-
ter exhibiting late senescence (Yoshida 1981; Abdelkha-
lik et al. 2005). Several QTLs were mapped, and QTLs 
on chr. 6 and 9 were consistently reported in all these 
studies (Cha et al. 2002; Toojinda et al. 2003; Abdelkha-
lik et al. 2005; Lin et al. 2010; Fu et al. 2011). They also 
show high synteny (see first section) with stay-green QTLs 
in sorghum (Xu et al. 2000). Such positional correspond-
ence may imply the conserved organization of the genes in 
the genome and also the functions of the genes underlying 
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the stay-green traits that need to be explored. In addition, 
several genes have been reported to be associated with the 
senescence in rice such as senescence-associated genes 
(SAGs, Lee et al. 2001; Liu et al. 2008, 2010). Rice plants 
overexpressing these genes showed an altered source/sink 
relation, with nitrogen content decreasing more slowly, 
and sugars were removed more rapidly than the wild-type 
plants. A submergence tolerance gene, SUB1A, was shown 
to delay dark-induced flag-leaf senescence through hormo-
nal regulation (limits ethylene production) in rice (Fukao 
et al. 2012). Such genes could be interesting as they exhibit 
dual functions, altering ethylene production, which is a 
major hormone associated with the apical dominance con-
straints in rice spikelets (Mohapatra et al. 2011) and spike-
let fertility in wheat (Hays et al. 2007). In this regard, iden-
tifying genes not only in leaves but also in awns and spike 
green structures could be interesting to delay spike senes-
cence and to improve assimilate filling in the grains.

Assimilate partitioning and lodging resistance

Assimilate partitioning and yield traits

Dynamic processes such as the rate and duration of grain 
filling determine the individual grain size and grain weight. 
Several QTLs were identified in bread wheat (wang et al. 
2008b; Salem et al. 2007), and most grain yield QTLs were 
derived from the domesticated allele (LDN) from a strong 
selection for grain yield per se (Ladizinsky 1998; Li et al. 
2002; Kumar et al. 2006; Kuchel et al. 2007; Cuthbert 
et al. 2008; Maccaferri et al. 2008; Ali et al. 2011; Peleg 
et al. 2011). while the loci located on chr. 1–5 are overrep-
resented, QTLs on the chr. 3 were constantly reported indi-
cating that these QTLs might be associated with the rate of 
grain filling in wheat (Table 1, wang et al. 2008b). In rice, 
several QTLs for grain yield were mapped explaining 10–
20 % variation (Ishimaru et al. 2001a; Zhang et al. 2004; 
Xing and Zhang 2010). Many of these QTLs were colo-
cated with QTLs for biomass (chr. 1 and 3) and harvest 
index (chr. 1) suggesting that grain yield increase could be 
genetically explained by the improvement of either bio-
mass or harvest index (Zhang et al. 2004). Interestingly, 
QTLs for biomass and harvest index did not overlap; sug-
gesting a genotype with higher biomass and harvest index 
could be achievable by the combination of the positive 
alleles of both traits (Zhang et al. 2004; Xing and Zhang 
2010).

The higher harvest index could be achievable by 
increasing assimilate partitioning to grains. Harvest index 
is negatively correlated with plant height, heading date, 
panicle length and width while positively correlated with 
seed set, grain/panicle weight (Sabouri et al. 2009; Li et al. 
2012b). In wheat, QTLs for stem-reserve mobilization 

were mapped on different chr. 2D, 5D and 7D (Salem et al. 
2007; Kajimura et al. 2011) while in rice, QTLs on chr. 4 
(GIF1, wang et al. 2008a) and chr. 5 (rg5) were mapped 
(Ishimaru et al. 2005a). The near-isogenic rice line carry-
ing rg5 showed high sink activity and increased assimilate 
partitioning to particularly inferior caryopses in the late 
stage, and improved the total ratio of filled grains (Ishi-
maru et al. 2005b). A strong correlation between the num-
ber of stem vascular bundles and yield traits was reported 
in rice (Peterson et al. 1982; Cui et al. 2003), suggesting 
that a high number of large vascular bundles per spikelet 
may contribute to the rapid accumulation of assimilates 
in grains (Xing and Zhang 2010). exploring the genetic 
variation for vascular tissues and its capacity to accom-
modate more carbohydrates and other nutrients would be 
interesting.

Many of the QTLs detected for grain yield were co-
localized with QTLs for yield-associated traits in both 
crops. Until now, none of the major QTLs for grain num-
ber representing grains per spike and per square metre 
were cloned in Triticeae (McIntyre et al. 2010; Sreeniva-
sulu and Schnurbusch, 2012). Recent studies revealed 
that grain size and shape are largely independent traits, 
controlled by different QTLs located on different chromo-
somes in wheat (Gegas et al. 2010). Further, the proximity 
of grain size QTLs to Rht-B1 and Rht-D1 indicates pleio-
tropic effects of dwarfing loci on grain architecture param-
eters. However, modern hexaploid wheat has significantly 
reduced grain shape variation compared to ancestral wheat 
species while retained a relatively large percentage of the 
nucleotide diversity of A and B genomes of tetraploid 
ancestors (Gegas et al. 2010). Thus, grain size/weight 
appears to exhibit less variation and improving grain 
weight, for example overexpression of GIF1 gene in the 
ovular vascular tissues might improve grain weight (Xing 
and Zhang 2010). Grain width and weight were shown to 
be regulated by genes such as GW2 (Song et al. 2007), 
GW5 (weng et al. 2008), qSW5 (Shomura et al. 2008) in 
rice and TaGW2 in wheat (Bednarek et al. 2012), while 
an increased rice grain length is controlled by qSS7 (Qiu 
et al. 2012; Bai et al. 2010). These genes are not yet widely 
used in crop improvement programmes. A gene (GS3) 
regulating grain length and weight was cloned, and it was 
mapped on chr. 3 and 6 (Fan et al. 2006; Yu et al. 1997; 
Tan et al. 2000; Xing et al. 2002; Thomson et al. 2003; 
Aluko et al. 2004; Li et al. 2004; Xing and Zhang 2010). 
The increase in grain size was largely due to longitudinal 
increase in cell number and has been detected in a diverse 
range of rice germplasm in the cultivated rice species, O. 
sativa (Fan et al. 2008; Takano-Kai et al. 2009; Xing and 
Zhang 2010), highlighting the importance of cell size vari-
ation, particularly aleurone organization, to increase grain 
weight in both crops.
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Metabolic and enzymatic regulation of grain development

Metabolic processes associated with sucrose and starch 
synthesis in the endosperm would influence grain develop-
ment. The lower activity of carbon metabolic enzymes in 
the endosperm occurs due to their interaction with inhibi-
tory proteins, thermo-sensitivity and structural limitations. 
enzymes such as sucrose phosphate synthase (SPS) and 
starch synthase III (SSIII) exhibit low activity due to the 
presence of certain phosphorylation sites, which interact 
with inhibitory proteins, 14-3-3 (Castleden et al. 2004; 
Song et al. 2009). This suggests that eliminating SPS and 
SSIII interaction with 14-3-3 proteins would increase their 
activity and grain carbon accumulation. Alternatively, low-
ering the activity of 14-3-3 proteins (e.g. the removal of ε 
subunit of 14-3-3 proteins resulted in decreased activity of 
these proteins) could reduce their interaction with carbon 
metabolic enzymes, which may increase leaf starch accu-
mulation (2- to 4-fold increase in Arabidopsis, Sehnke et al. 
2001a).

Many of the carbon metabolic enzymes are temperature 
sensitive in both crops (Farooq et al. 2011), and this has 
been shown to be controlled by a single-nucleotide poly-
morphism in rice (granule-bound starch synthase, GBSS, 
Larkin and Park 1999); thus, it could be a target for genetic 
improvement. Structural modifications to AGPase (Meyer 
et al. 2007) or mutagenesis of cysteine 81 with serine in 
APS1 subunit of AGPase (Hädrich et al. 2012) showed 
yield advantage in wheat and improved leaf starch accumu-
lation in Arabidopsis, respectively. Further, a rice mutant 
lacking a large subunit of AGPase has drastically reduced 
starch content in the culm but increased starch in leaves and 
showed normal plant productivity, revealing plasticity in 
the photosynthates distribution among different temporary 
carbohydrate storage pools within the plant (Cook et al. 
2012). These studies suggest that AGPase activity could be 
increased by improving its structural arrangement (Meyer 
et al. 2007; Cook et al. 2012) and its substrate availability 
(trehalose 6-phosphate, Martínez et al. 2011) during grain-
filling period.

Sucrose accumulation in the endosperm shows spa-
tial variation in order to maintain metabolic homeostasis 
and energy (ATP) balance (Rolletschek et al. 2011). Sev-
eral other genes associated with maternal tissues influ-
ence sucrose and nutrient transfer to endosperm cells. For 
example, maternally expressed gene1 (Meg1) in maize 
was shown to control the establishment and differentiation 
of endosperm nutrient transfer cells and promote nutrient 
allocation to the seed offspring (Costa et al. 2012). while 
it is unknown if there is any maternal tissue regulation of 
sucrose import into the wheat endosperm (e.g. endosperm-
mediated AP2 gene, whose influence was described as 
being of maternal origin; Ohto et al. 2005), it is conceivable 

that optimal spatial metabolic variation of endosperm con-
tributes to high carbon conversion efficiency, as was shown 
for maize starchy endosperm (Alonso et al. 2011). How-
ever, the possibilities of metabolites such as sucrose and 
starch being as markers to increase grain yields are largely 
unexplored (see section on metabolomics-assisted plant 
breeding).

Hormonal regulation of grain development

In addition to their remarkable roles in growth and devel-
opment, hormonal concentration and their balance play 
major roles in grain development (Brenner and Cheikh 
1995). Hormones exert several effects on grain develop-
ment during grain filling. Cytokinin (CK) oxidases genes 
(TaCKX2.1 and 2.2) were shown to be linked to grain yield 
in both crops (Ashikari et al. 2005; Zhang et al. 2010b). 
Reduced expressions of HvCKX1 and OsCKX2 resulted 
in higher grain yield in barley (Zalewski et al. 2010) and 
rice (Ashikari et al. 2005). High CK levels increased seed 
yield (~55 %) without increasing the CO2-fixing source 
in Arabidopsis (Bartrina et al. 2011). In contrast, a sig-
nificant positive correlation between the expression of 
TaCKX2 genes and grain number was observed in wheat 
(Zhang et al. 2010b). This differential regulation of CKX 
genes on yield components in both crops is unclear. Auxins 
(IAA) and abscisic acid (ABA) are key regulators of grain 
sink activity (Asli and Houshmandfar 2011; Pudelski et al. 
2012), and a higher CK and IAA levels and lower ABA lev-
els (higher CK/IAA and ABA ratio) are beneficial at early 
grain-filling period to increase the sink activity in order to 
attract more assimilates.

Higher ethylene levels were shown to reduce grain 
weight (Beltrano et al. 1994; Yang et al. 2006a) through 
accelerating kernel abortion (via PCD and DNA fragmenta-
tion) in wheat (Young and Gallie 1999; Hays et al. 2007). 
ethylene metabolism operates in endosperm transfer cells, 
where PCD initiates and progress stochastically in wheat 
endosperm; whereas it initiates within the upper central 
endosperm and expands outwards in maize (Young and 
Gallie 1999), indicating the complex nature of regulation 
of ethylene. Despite these acknowledged studies, the pre-
cise regulation of several of these hormonal effects on grain 
development and fertility is largely unknown.

The optimal balance of spatial and temporal generation 
of hormones is important for proper grain filling. Certain 
hormones such as GAs and kinetin improve growth and 
development more on the basal branches than on the api-
cal branches, in contrast to IAA, which accelerates growth 
of the spikelets on the apical branches only (Mohapatra 
et al. 2011). Such spatial production of hormones affects 
the assimilate partitioning to the spikelets resulting inferior 
and superior spikelets. For example, the slow rate of grain 
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filling of the inferior grains was attributed to the low con-
tents of zeatin, zeatin riboside, IAA and ABA and the higher 
levels of ethylene (Zhao et al. 2007). Higher concentrations 
of ethylene were more detrimental to the spikelets in the 
lower part of the panicle, as they stay longer in the boot of 
the flag-leaf sheath. Moreover, the compact arrangement of 
spikelets in the panicle axis increase ethylene production 
(Panda et al. 2009), and high levels of ABA was proposed 
to antagonise the negative effects of ethylene on spikelets 
(Yang et al. 2006b). Polyamines (spermidine and spermine) 
show negative interaction with ethylene, and a high ratio of 
polyamine and ethylene improves grain filling of spikelets 
(wang et al. 2011). Hormones are known to affect the activi-
ties of carbohydrate metabolic enzymes and cell-cycle genes. 
Higher levels of ethylene were shown to repress the activities 
of SUS, INv and starch synthesis enzymes such as AGPase 
and soluble starch synthase (Naik and Mohapatra 2000; Zhu 
et al. 2011), and high levels of ABA reduce SUS activity 
(Tang et al. 2009; Zhu et al. 2011); while high concentrations 
of cytokinins could enhance the activities of cell-cycle genes 
(Morris et al. 1993). Cytokinins could improve assimilate 
unloading from the phloem in the developing seeds. Overall, 
these studies suggest that plant hormones are well connected 
to grain yield physiology, and an appropriate levels of these 
hormones through either phenotypic selection or biotechno-
logical interventions would be necessary to improve grain 
yields in the future given clear evidence for sink limitation 
even in the modern cultivars that are presumably associated 
with conservative hormone-mediated responses to the envi-
ronment (Reynolds et al. 2009).

Molecular regulation of grain development

Grain development is associated with massive changes in 
gene expression, proteomics and transcriptomics (wan 
et al. 2008b; Meziani et al. 2012; Pont et al. 2011), which 
largely coincide with specific developmental phases in 
order to improve carbon accumulation and its conversion 
efficiency (vensel et al. 2005; Nadaud et al. 2010). Prot-
eomic maps of wheat grain development have revealed 
that all genomes (A, B and D) carry different proportions 
of proteins during grain development (Kim et al. 2010a, b), 
suggesting that altering the portion of any of the genomes 
would alter certain seed-specific proteins during the grain 
development. For example, the removal of D genome from 
hexaploid constitution substantially affected the expression 
of nonstorage proteins (Islam et al. 2003).

Modifying the expression of cell division and expan-
sion genes may alter grain filling (Laudencia-Chingcuanco 
et al. 2007). extending the activation of cell division genes 
would allow both cell division and expansion processes 
simultaneously, which might produce more, but also larger 
cells, which could increase the sink activity. Recently, 

an overexpression of a cell-cycle gene, CYCD7; 1, pro-
moted overgrowth of both embryo and endosperm through 
increased cell division and enlargement (Collins et al. 
2012), and an overexpression of TRANSPAReNT TeSTA 
GLABRA 2 (TTG2, Ohto et al. 2009) increased cell expan-
sion and thus seed growth in Arabidopsis. In wheat, the 
activity of CDK genes is linked to Ph1 locus as Ph1 locus 
suppresses cdk2-type activity in hexaploid wheat (Grif-
fiths et al. 2006), suggesting that cell division during grain 
development is tightly linked to the genetic factors (Ph1) 
associated with the polyploidization.

In rice, three cell wall invertase genes, OsCIN1-3, play 
complementary roles in assimilate unloading (wang et al. 
2008a); while INV3, Sus3 (SuSase) and AGPL-1 and 2 
(AGPase) expressions were higher in superior spikelets 
(Ishimaru et al. 2005b). Recently, an overexpression of a 
gene, GIF1 (grain incomplete filling1), has been shown to 
improve carbon deposition during early grain filling and 
increase grain weight (wang et al. 2008a). Indeed, the natu-
ral variation for grain size was linked to a gene, GS3 (grain 
size 3; Mao et al. 2010). A gene, indica Gn1, differentiates 
grains on secondary and tertiary rachis in indica rice, which 
increased grain number by 40 % in japonica rice (Yoshida 
et al. 2006). Several transcription factors such as Carbon 
Starved Anther (CSA; Zhang et al. 2010a), Rice Starch Reg-
ulator1 (RSR1; Fu and Xue 2010) and seed storage proteins 
(AACA, Zhu et al. 2003) were shown to be linked to nutri-
ent and carbon partitioning during zing; however, they have 
not so far been explored. These studies suggest that these 
genes could be useful to increase assimilate partitioning 
and grain architecture in both crops.

Lodging resistance

Lodging resistance is an important factor to reduce yield 
loss under field conditions and is associated with stem 
strength and crown root spread depending on conditions 
(Foulkes et al. 2011). Previous studies suggest that the 
second internode play an important role in wheat lodg-
ing resistance (Zuber et al. 2001). Several QTLs for lodg-
ing resistance have been mapped on several chromosomes 
(Keller et al. 1999; Hai et al. 2005; Marza et al. 2005; 
McCartney et al. 2005; Huang et al. 2006; verma et al. 
2008; Ma 2009). QTL mapped on 5A was consistently 
reported in all these studies suggesting that this QTL might 
be more closely linked to lodging resistance (Keller et al. 
1999; Marza et al. 2005; McCartney et al. 2005; Huang 
et al. 2006; verma et al. 2008; Ma 2009). A gene on chro-
mosome 3B was mapped, which was shown to be one of 
the locations of a stem solidness gene (Lanning et al. 2006) 
and for stem strength and diameter (Hai et al. 2005), sug-
gesting that different genetics may control lodging resist-
ance traits. Recently a gene, STRONG CULM2 (SCM2) 
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was identified, and a near-isogenic line carrying SCM2 
showed enhanced culm strength in rice (Ookawa et al. 
2010). This gene has a pleiotropic effect on yield compo-
nents and increased spikelet number. This indicates that 
many of the genes controlling plant traits have pleiotropic 
effects on other traits, and such genes should be identified 
and explored in crop improvement programmes.

In rice, plant height has been the main target for improv-
ing lodging resistance, and several genes were identified 
such as Heterotrimeric G protein (RGA1, Ashikari et al. 
1999; Fujisawa et al. 1999), OSH15 (Sato et al. 1999) and 
sd-1 (Monna et al. 2002; Sasaki et al. 2002; Spielmeyer 
et al. 2002). Since most dwarfing genes inherit in an auto-
somal recessive pattern as recessive alleles (Mackill and 
Rutger 1979) and exhibit pleiotropic effects on other traits 
(OSH15 reduce panicle length; Sato et al. 1999), these can-
not be used yet in practical agriculture or breeding (Kashi-
wagi and Ishimaru 2004). A QTL (prl5) on chr. 5 (Kashi-
wagi and Ishimaru 2004; Kashiwagi et al. 2010), a QTL 
for culm strength (STRONG CULM2) on chr. 6 (Ookawa 
et al. 2010) and several QTLs for stem diameter (sdm) on 
chr. 1, 7, 8 and 12 (Kashiwagi et al. 2008) were mapped. 
Since some of these QTLs were co-localized with QTLs 
for panicle structure and plant height (Huang et al. 2009; 
Ookawa et al. 2010), these QTLs might be useful for the 
rapid development of lodging resistance genotypes using a 
marker-assisted selection approach.

Metabolomics-assisted plant breeding

Metabolomics-assisted plant breeding has been emerged 
as an ‘additional’ route towards crop improvement, despite 
genomics and genetics-based approaches, in which metab-
olites are used as biomarkers in plant breeding (Her-
rmann and Schauer 2013). Metabolites show extensive 
genetic diversity in many (crop) plant species such as rice 
(Degenkolbe et al. 2013), wheat (Beleggia et al. 2013), 
maize (Frank et al. 2012), tomato (Schauer et al. 2006), 
potato (Carreno-Quintero et al. 2012), rapeseed (wag-
ner et al. 2012) and Arabidopsis (Sulpice et al. 2010), and 
thus reflect a selective force linking genotype and pheno-
type (Fiehn 2002). Several techniques (GC–MS, LC–MS, 
Ce–MS and NMR, Obata and Fernie 2012) are commonly 
used in plant metabolomics research, and recent advances 
in metabolomics allow monitoring of the whole metabolite 
inventory of an organism, or even of a specific cell type, 
in a high-throughput approach under both stress and non-
stress conditions.

The use of metabolites as biomarkers in plant breed-
ing is strongly debated and has not yet been commercially 
exploited. Nevertheless, an expanding catalogue of metabo-
lite QTLs (mQTLs) is available, and several prototype stud-
ies assessing the combination of marker-assisted selection/

association mapping at the metabolomics level are cur-
rently underway worldwide (mQTLs for lipid metabolism 
in rice grains, Ying et al. 2011; mQTLs for a wide range 
of metabolites in rice grains, Matsuda et al. 2012; mQTLs 
for amino acid contents in wheat, Jiang et al. 2013; sev-
eral mQTLs for several metabolites in wheat flag-leaf, 
Hill et al. 2013). These studies demonstrate that specific 
regions of genome that affect agronomic traits and bio-
mass also have distinct effects on specific combinations of 
metabolites (Meyer et al. 2007; Hill et al. 2013), strongly 
supporting the association between metabolites and yield 
traits. However, mQTLs tended to be less heritable, and 
numerous mQTLs show moderate effect on phenotype 
structure due to epistatic interaction (Rowe et al. 2008). 
Given the low heritability of yield traits (~10 %) that have 
been successfully incorporated into breeding programmes, 
the mQTLs with the heritability of 25–35 % are encour-
aging enough to include this metabolic approach in future 
breeding programmes (Fernie and Schauer 2008; Hill et al. 
2013). In this perspective, the development of hybrid culti-
vars instead of open-pollinated cultivars could potentially 
increase certain metabolites without any yield penalty 
(Fernie and Schauer 2008).

Metabolite levels are more closely linked to phenotype 
than genes (Fiehn 2002; Herrmann and Schauer 2013), and 
thus the epistatic, epigenetic or post-translational effects 
on a specific trait evolution can be directly linked to metab-
olite profiles (Herrmann and Schauer 2013). Although 
metabolite changes are species-, stress- and environment-
specific, they respond rapidly to even short episodes of 
environmental changes (Stitt et al. 2010), making them 
very likely candidates as early stress markers for study-
ing plant stress responses. Metabolomics-assisted breeding 
could be more useful for breeding polyploidy crops espe-
cially for crops for which hardly any genomic informa-
tion is available or for the traits showing high genetic and 
environmental complexity (Steinfath et al. 2010). In this 
respect, Gartner et al. (2009) proposed the combination of 
genetic and metabolic markers as promising approach for 
traits having complex molecular bases. The investment in 
the technology could be expensive; however, several met-
abolic markers could be identified simultaneously in one 
measurement that can dramatically reduce the cost of bio-
marker selection. Certain trait responses may not be linked 
to metabolite dynamics, for example no mQTL was iden-
tified on homologous group 2 chromosomes in which the 
photoperiod response (Ppd) genes are located (Hill et al. 
2013). The presence of inherent feedback metabolic loops 
for maintaining homeostatic nutrient levels in plants may 
pose problems in increasing expression levels of anabolic 
biosynthetic genes (Tang et al. 2007). Therefore, the prac-
tical usage of metabolomic approach is not a trivial task, 
and much information needs to be generated before this 
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technology becomes a practical tool in future plant breed-
ing programmes.

Similarities and differences between wheat and rice 
yield-associated traits

wheat and rice, being largely a temperate and tropical 
species, differ for environmental factor responses. win-
ter wheat requires vernalization, while rice does not; and 
wheat requires long days, while rice requires short days. 
The genetic loci controlling these responses appear to be 
located on different genomic regions in both species (Cock-
ram et al. 2007; Colasanti and Coneva 2009: Yano et al. 
1997; Yamamoto et al. 2000; Lin et al. 2006). However, 
certain Vrn loci share sequence similarity with photoperiod 
loci in rice. For example, vernalization loci, VRN-B3, has 
been shown to be collinear with OsFT in rice, which under-
lies the photoperiod gene, Hd3a (Yan et al. 2006). Simi-
larly, Vrn-A1 shares high synteny with Hd6 in rice (Kato 
et al. 1999). while eps genes are shown to be absent in rice 
(Faricelli et al. 2009), two photoperiod alleles, Hd1 and 2 
located on chr. 6 and 7, respectively, were proposed to be 
associated with earliness in rice (Nakagawa et al. 2005). 
The distal regions of the long arm of wheat chromosome 1 
were showed to be undergone numerous changes that dif-
ferentiated wheat and rice genomes, which are thought to 
be a part of an ancient duplication between rice chr. 5 and 1 
(valárik et al. 2006).

Genetic analyses have identified both common and dis-
tinct QTLs regulating photosynthetic traits. Few QTLs 
located on the same chromosomes regulating flag-leaf char-
acteristics (Coleman et al. 2001; wang 2009) and chloro-
phyll content (Quarrie et al. 2006; Zhang et al. 2009; Yan 
et al. 2010a, b) were identified. In wheat, QTLs on chr. 4 
were linked to chlorophyll fluorescence traits (Zheng-Bin 
et al. 2010), while QTLs on chr. 4 was shown to control 
photosynthesis rate in rice (Adachi et al. 2011). Although 
QTLs regulating Rubisco content in wheat is unknown (but 
in barley QTL on chromosome 4 was mapped for Rubisco 
content; Becker and Heun 1995; Forster et al. 2000), QTLs 
located on chr. 8, 9 and 10 were shown to control Rubsico 
content in rice (Ishimaru et al. 2001b; Kanbe et al. 2009). 
These studies highlight a common and distinct genetic con-
trol of photosynthetic traits in both species.

Although wheat and rice operate similar C3 photosyn-
thetic mechanisms, they differ in many aspects involved 
in photosynthesis processes. Both chloroplast and meso-
phyll cell area are high in rice as compared to wheat, 
which increases CO2 diffusion into the stroma. The bal-
ance between the capacities of Rubisco and RuBP regen-
eration does not differ between two species (Sudo et al. 
2003); wheat allocates higher leaf N to Rubisco with 
greater Kcat compared to rice (Makino et al. 1992, 2011) 

and thus exhibit higher photosynthesis than rice in cool 
temperature conditions (<25 °C). The RuBP regeneration 
capacity is also higher in wheat than in rice due to greater 
electron transport rate, which is closely related to a greater 
Cyt f content (Sudo et al. 2003). Higher RuBP regenera-
tion capacity is also supported by enzymes such as NADP-
G3PDH, PGAKinase and cpFBPase activities per unit 
leaf N, which are higher in wheat than in rice (Sudo et al. 
2003).

The carbohydrate metabolic enzymes operate in simi-
lar manner in both species. However, they differ for 
reserve carbohydrates storage; wheat synthesizes fructans, 
while rice do not, due to the lack of enzyme, fructosyl-
transferase in rice (Ji et al. 2007). Some of the sucrose 
enzymes share sequence similarity. For example, wheat 
SSIv cDNA shows synteny and shares a similar exon–
intron arrangement with rice SSIvb (Leterrier et al. 2008). 
The enzyme isoforms required for starch biosynthesis in 
rice are proposed to be not found in other cereal tissues 
or non-cereal plants (James et al. 2003; Mohapatra et al. 
2011). In wheat, the SPS activity (Castleden et al. 2004), 
while in rice, starch synthase activity (SSIII, Sehnke et al. 
2001) was observed to be limited due to their interaction 
with 14-3-3 proteins. The isoforms of cytokinin oxidase/
dehydrogenase gene (CKX2) have proposed to be under-
gone a Triticeae-specific gene-duplication event in wheat 
and barley compared to rice (Mameaux et al. 2012). They 
were consistently showed to increase grain number per 
panicle in rice (Ashikari et al. 2005) and per spikelet in 
wheat (Zhang et al. 2010b). A gene, Gw2, increases grain 
weight in both crops (Su et al. 2011; Bednarek et al. 2012; 
Zhang et al. 2013), and it shows differential influence on 
yield components. In rice, Gw2 decreases grains per spike 
by 30 % and increases panicles per plant by 27 %, while it 
shows no effect on yield components in wheat (Bednarek 
et al. 2012).

Promises in translational biology between rice and wheat

A list of research gaps identified at the molecular level in 
both crops is presented in Table 3. Modifying phenologi-
cal phase durations, particularly stem elongation period, 
has been highlighted to increase wheat yield potential 
(Slafer et al. 2001). In this sense, the dominant early flow-
ering TaFT allele may be viable as it is associated with 
the insertion of a retroelement in the promoter. In barley, 
polymorphisms within the first intron are associated with 
the early allele. Recently, a novel retrotransposon inserted 
in the dominant Vrn-B1 allele confers spring habit in 
tetraploid wheat (Chu et al. 2011). The limited germplasm 
screens completed to date suggest that the early Vrn-B3 
allele has not been extensively used in commercial vari-
eties and represents a novel source to modulate wheat 
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flowering time (Yan et al. 2006; Cockram et al. 2007). 
VRN-A1, VRN-D3 and PPD-D1 are shown to be linked 
to specific developmental phases, stem elongation period, 
heading time and physiological maturity, respectively 
(Chen et al. 2010); however, the effects of these loci on 
modifying developmental phases are yet to be explored. 
The effects of earliness genes on flowering-time varia-
tion remain poorly characterized in both species (Colas-
anti and Coneva 2009). Progress in defining and utilizing 
eps loci will rely on the development of backcross lines 
to isolate individual QTLs, an approach that has proven 
highly successful in rice (Yano et al. 1997; ebitani et al. 
2005). As cereals possess relatively large number of eps 

loci and exhibit variation between both winter and spring 
types, eps loci represent an untapped potential for tar-
geted breeding for fine-tuning flowering time in both spe-
cies (Cockram et al. 2007).

Grain yields are dependent on three interacting traits: 
source, sink and assimilate flow to sink organs. The genetic 
regulation of traits comprising the sink is better understood 
than source and assimilates flow, and thus these should be 
the targets for future work (Xing and Zhang 2010). In both 
species, the genetic variability for photosynthetic capac-
ity in cultivated and wild relatives is yet to be explored, 
although limited studies have already been attempted 
using a few genotypes in both species (Teng et al. 2004; 

Table 3  Proposed research gaps to fill using a translational biology-based approach between wheat and rice

Trait wheat Rice

Developmental phase modifications Vrn-A1 (stem elongation period)
Ppd-D1 (heading time)
Vrn-D3 (maturity)
(Chen et al. 2010)

?

? OsPRR37 gene
(Koo et al. 2013)

earliness per se Eps genes
(Gouis et al. 2011)

? (Hd1&2)

Increased light interception ? Low Chl b contents or high Chl a/b ratio
(Zhu et al. 2010)

Chlorina-1 gene
(Zhang et al. 2006)

Increased intercellular CO2 concentration QTL on chr. 5B
(Yan et al. 2010)

?

Increased net photosynthesis ? PsbS, SBPase, FBPase
(Feng et al. 2007, 2009; Hubbart et al. 2012)

Rubisco protein polymorphism at position 309
(Met—C3; Ilo—C4)
(Christian et al. 2008; Whitney et al. 2011)

? ?

Increased Rubisco content ? RbcS gene
(Suzuki et al. 2007; Ishikawa et al. 2011)

Increased electron transport rate pFNRII proteins
(Bowsher et al. 2012)

?

Delayed leaf senescence and lower ethylene  
production

? SUB1A gene
(Fukao et al. 2012)

Increased assimilate mobilization ? GIF1 gene (wang et al. 2008a)
Rg5 (Ishimaru et al. 2005a)

Increased grain assimilate accumulation ? Higher number of large vascular bundles of spikelets
(Xing and Zhang, 2010)

Increased grain length and weight ? SS7 (Qin et al. 2012)

GS3 (Takano-kai et al. 2009)

Increased grain number ? Gn1 (Yoshida et al. 2006)

Increased granule-bound starch synthase  
thermostability

? Single-nucleotide polymorphism in GBSS  
protein (G vs. T)

(Larkin and Park, 1999)

Increased starch accumulation AGPase structural modifications
(Meyer et al . 2007)

?

Increased culm strength ? SCM2 gene
(Ookawa et al. 2010)
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Matsumoto et al. 2005). In rice, one allele of OsBRI1, d61-
7, confers two important agronomic traits—semidwarf 
stature and erect leaves—and led to 30 % more grain yield 
than wild type at high temperature (Morinaka et al. 2006). 
Although modern wheat has partially erect leaves and the 
genes for the erect leaves likely exist in most current crops 
(Richards 2000), searching for d61-7 like genes may be 
important to design leaf posture of all leaves of the canopy 
for improving light conversion efficiency (Zhu et al. 2010).

In both species (being C3 species), the CO2/O2 speci-
ficity of Rubisco could be modified using the variation in 
nucleotide diversity. For example, in Rubisco nucleotide 
sequence, at position, 328, many C3 species exhibit C4 
dominant serine residue and mutation at this site could alter 
CO2/O2 specificity of the Rubisco (Christin et al. 2008). 
Recently, the evolution of phosphoenolpyruvate carboxy-
late—enhanced feedback inhibitor tolerance in C3 and C4 
plants—was shown to be determined by a single residue, 
Arg884 (Paulus et al. 2013). The catalytic switch, the key 
residue of faster carboxylation rate, is yet to be identified 
in C3 species (isoleucine 309 in C4 species, whitney et al. 
2011). Also, the exact interaction between Rubisco activase 
and Rubisco is unclear in both species, although models 
predict that amino acids between 89 and 94 of the L-sub-
units are important targets of interaction with Rubisco 
(Portis et al. 2008). exploring the nucleotide diversity of 
Rubisco and its mode of interaction with Rubisco activase 
would greatly improve the Rubisco activity in both species.

As QTLs regulating Rubisco content have been reported 
to vary with the developmental stage in rice (Ishimaru et al. 
2001b; Kanbe et al. 2009), developmental stage-specific 
QTLs should be identified and explored. Any pleiotropic 
effects on other traits should be analysed. For example, a 
QTL on chromosome 4, which regulates several photosyn-
thetic traits in rice, was shown to increase leaf N content 
and hydraulic conductance by increasing root surface area 
and root hydraulic conductivity (Adachi et al. 2011). Light 
use and conversion efficiency could be increased using 
Chl1 gene in both crops (Larkum and Kühl 2005; Chen and 
Blankenship 2011).

Currently, there is still large knowledge gaps on the 
genetic and molecular control of the biological processes 
related to yield traits, particularly for grain development. 
None of the major QTLs for grain number were cloned in 
Triticeae (McIntyre et al. 2010; Sreenivasulu and Schn-
urbusch, 2012). Grain weight is known to be unaltered 
in modern wheat compared to old cultivars. Many QTLs 
located on chr. 4 and 7 were identified for seed weight 
in wheat (McCartney et al. 2005; Huang et al. 2006; Mir 
et al. 2012). In rice, seed weights of QTLs were identified 
on chr. 1, 3, 5 and 6 (Aluko et al. 2004; Li et al. 2004; 
Fan et al. 2006; Xing and Zhang 2010), and rice chr. 3 
and 6 represent parts of wheat chr. 4 and 7, respectively 

(Gale and Devos 1998; ter Steege et al. 2005). These stud-
ies highlight the importance of chr. 4 and 7 for improving 
seed weight, and thus grain yield in wheat more than in 
rice as single grain weight is genetically constant in rice 
irrespective of N application and growth environments 
(Yoshida 1981). To improve the assimilate transport 
capacity, genotypic variation for the translocation effi-
ciency of carbohydrates and nutrients among the available 
germplasm should be explored in both species. In this 
sense, vascular systems, enzymes and assimilate trans-
porters should be considered (Cui et al. 2003; Xing and 
Zhang 2010).

The increased grain number and grain weight have been 
consistently reported to be linked to increasing endosperm 
cell number and aleurone cell size in both species (Brock-
lehurst 1977; Radley 1978; Chojecki et al. 1986; Yan et al. 
2010a, b). The determination of grain number, which 
is associated with number of fertile florets per spikelet, 
appears to be due to heterochronic initiation of the flo-
ret meristem development from the spikelet meristem 
and is strongly ploidy dependent in wheat (Shitsukawa 
et al. 2009). Identification of the genes controlling het-
erochronic development of the floret meristem and their 
functional analysis of the homoeologous genes should be 
performed in the future (Shitsukawa et al. 2009). In addi-
tion, the parental genome imbalance was shown to be one 
of the major determinants of endosperm development in 
Arabidopsis. For example, increasing the parental genome 
ratio (e.g. 2 m:4p) in endosperm delays endosperm cellu-
larization and produce larger seeds, while increasing the 
maternal genome ratio (e.g. 4m:2p) leads to precocious 
endosperm cellularization and smaller seeds in Arabi-
dopsis (Tiwari et al. 2010). This suggests that maternal 
genomic dosage play a key role in endosperm development 
(Lu et al. 2012). Understanding such parental genomic 
regulation of grain development in both species particu-
larly in polyploidy species such as wheat would undoubt-
edly helps to increase grain size (Dupont 2008; wan et al. 
2008b; Nadaud et al. 2010; Martínez et al. 2011; Tasleem‐
Tahir et al. 2011; Lesage et al. 2012; Meziani et al. 2012). 
In both species, altering aleurone cell developmental fate 
would alter grain weight potential. while the transcription 
factors regulating aleurone cell development is unknown in 
wheat, GAMYB in barley (Gubler et al. 2002) and MRP-1 
in maize (Gomez et al. 2009) were shown to control aleu-
rone cell development.

In both species, hormonal regulation of grain filling has 
been emphasized. Higher CK, GA and IAA levels and lower 
ABA and ethylene levels appear to be beneficial at early 
grain-filling period to increase the sink activity to attract 
more assimilates. while such hormonal regulation in rice is 
relatively comprehensive (Mohapatra et al. 2011), this has 
been largely unexplored in wheat. The hormonal regulation 
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(e.g. ethylene) in cereal grains is strongly cultivar dependent 
(eastmond and Jones 2005); thus, the selection of, screen-
ing for, genotypes with optimal flag-leaf or grain ethylene 
might be a viable option for yield improvement.

To summarize, conventional approaches to crop 
improvement have maintained genetic gains to the present 
day; recent technological advancements have led to the 
emergence of high-throughput tools to explore and exploit 
plant genomes for crops improvement. These have deci-
phered both conserved as well as species-specific genes 
linked to yield traits in both crop species. Genomics-based 
translational approaches can open new perspectives not 
only for plant biologists to understand crop diversifica-
tion but also to assist in designing new strategies for crop 
improvement.
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